News

  • 0
  • 0

Global Lithium-ion batteries market trend 2023-2026 Progress in the field of research on anode materials for lithium-ion batteries by Newsmarco-berti

Russian president demanded that exports of Russian gas to "unfriendly" countries be settled in rubles. The demand has raised concerns in Germany about possible supply disruptions and the impact on industry and households if utilities do not pay in robles. Europe gets about 40% of its gas from Russia. Last year, Europe imported about 155 billion cubic meters. Germany, Europe's largest economy, depends heavily on Russian gas.

The chief executive of Germany's E.ON said the German economy would face "significant damage, which should be avoided if possible" without Russian supplies. He also said it would take Germany three years to wean itself off Russian gas.  

In the event of a supply disruption, Germany's gas network regulator would prioritize home heating over industrial use, so energy-hungry manufacturers such as steelmakers would be the first to suffer, he said.

The volatile international situations will continue to affect the markets and prices of many commodities like the Lithium-ion batteries.

Lithium-ion batteries have become hotspots in energy research due to their higher energy density, long service life, and smaller volume compared with lead-acid, nickel-cadmium, nickel-metal hydride, and other batteries, and no memory effect. One. The negative electrode material is one of the critical components of lithium-ion batteries. It acts as the acceptor of lithium ions and realizes the insertion and extraction of lithium ions during the charging and discharging process. Therefore, the quality of the negative electrode material directly affects the overall performance of the lithium-ion battery. Graphite and modified graphite are widely used as anode materials for commercial lithium-ion batteries. Still, their theoretical capacity is only 372mAh/g, which significantly restricts the development of high-energy power batteries. Group IV element (silicon, germanium, tin)-based anode materials have become a research hotspot for next-generation lithium-ion batteries due to their high theoretical capacities (3579mAh/g, 1600mAh/g, 994mAh/g, respectively). However, silicon, germanium, and tin-based anode materials have the problem of significant volume expansion during the charging and discharging process. Long-term charging and discharging will cause the pulverization of particles and the shedding of active materials, thus affecting the cycle stability of lithium-ion batteries.

1651115005808790.jpg

In recent years, the advanced lithium-ion battery team led by Han Weiqiang, a researcher at the Institute of New Energy Technology affiliated with the Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, has made a series of progress in high-capacity silicon, germanium, and tin-based anode materials. In terms of high-performance silicon-based anode materials, researchers have developed a low-cost, high-capacity, and high-stability porous silicon-based anode material technology. By carbon coating, the porous silicon, the performance of the silicon-based negative electrode material for lithium-ion batteries is further improved. The capacity retention rate of the silicon-carbon composite electrode material was 86.8% after 300 charge-discharge cycles. Related research has applied for Chinese invention patents (201410150747.5, 201410276413.2), and the research results were published in NanoEnergy (2015, 11, 490-499) in the form of Communication.

Based on the previous work, the team synthesized and prepared a series of new phase MSn5 (M=Fe, Co, Fe0.5Co0.5) alloy nano-anode materials using the wet chemical method of improving polyols. The synthesized FeSn5 alloy nanoparticles have a theoretical capacity of 929mAhg-1 when used as a negative electrode material for lithium-ion batteries, which is the material with the highest theoretical specific capacity among the reported M-Sn (M is an electrochemically inert metal) alloy. The researchers prepared a series of Fe0.5Co0.5Sn5 new phase alloy nanoparticles with a 30-50nm particle size range, which further expanded the Co-Fe-Sn phase diagram. Related achievements have applied for invention patents (2013104705134, 201310706760X, 2103715406A). At the same time, the charge-discharge mechanism was deeply discussed and explained by in-situ XAFS, in-situ XRD, and electrochemical test methods. The research on the electrochemical mechanism of this series of tin-based new phase alloy anode materials provides effective theoretical guidance for the team's subsequent development of high-performance tin-based anode materials. Relevant results were published in JournalofMaterialsChemistryA (2015, 3(13):7170-7178) and ACS Appl.Mater.Interfaces (2015,7,7912-7919).

The team has also made progress in the research and development of long-life titanium-based anode materials, applying for an invention patent (201310685139. X), and the relevant results were published in the Journal of Materials Chemistry (2014(2), 10599-10606).

High-quality lithium-ion batteries supplier

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to developing, producing, processing, selling, and technical services of lithium-ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase, and other negative materials (silicon-carbon materials, etc.). The products are widely used in high-end lithium-ion digital power and energy storage batteries. If you are looking for Lithium battery anode material, click on the needed products and send us an inquiry:sales@graphite-corp.com.

 


Twitter recently announced that it had reached an agreement with Musk to take full ownership of the company for $54.20 per share, or about $44 billion in cash.  After the deal, Twitter will become a privately held company. The deal, which has been unanimously approved by Twitter's board but still requires shareholder and regulatory approvals, is expected to close in 2022.  

After Tesla CEO Elon Musk's acquisition of Twitter was finalized, Twitter founder Jack Dorsey sent out a series of six tweets expressing his expectations for Musk.  

Dorsey called Twitter his biggest regret, saying, “The idea and service is all that matters to me, and I will do whatever it takes to protect both. Twitter as a company has always been my sole issue and my biggest regret. It has been owned by Wall Street and the ad model. Taking it back from Wall Street is the correct first step.  

"In principle, I don't believe anyone should own or run Twitter," Dorsey goes on. He thinks the service is a public good.

He called Musk a "singular solution" to Twitter's problems, "Elon's goal of creating a platform that is" Maximally trusted and inclusive "is the right one." He wrote, "Thank you both for getting the company out of an impossible situation. This is the right path...  I believe it with all my heart."

Besides, because of the ever-changing international situation, the supply and prices of international bulk Lithium-ion batteries are still very uncertain.

Inquery us

Our Latest News

Global pce powder market trend 2023-2029 Polycarboxylate superplasticizer advantages by Newsmarco-berti

Polycarboxylate superplasticizer is based on unsaturated polymerizable monomers with active groups such as carboxyl group, sulfonic acid group, hydroxyl group and polyoxene group as raw materials.…

Global graphene powder market trend 2025-2028 Graphene bags significantly reduce platinum requirements for hydrogen fuel cells by Newsmarco-berti

Although hydrogen fuel is a promising alternative to fossil fuels, the catalyst it relies on for power generation is mainly composed of rare and expensive metal platinum, which limits the wide commercialization of hydrogen fuel.…

Global pce powder market trend 2025-2029 Development of polycarboxylate superplasticizer by Newsmarco-berti

According to the different molecular structure, it can be divided into four generations of polycarboxylate series superplasticizer, the first generation is acrylic acid copolymer, the second generation is propylene ether type, the third generation is…